Package: ecpc 3.1.1

ecpc: Flexible Co-Data Learning for High-Dimensional Prediction

Fit linear, logistic and Cox survival regression models penalised with adaptive multi-group ridge penalties. The multi-group penalties correspond to groups of covariates defined by (multiple) co-data sources. Group hyperparameters are estimated with an empirical Bayes method of moments, penalised with an extra level of hyper shrinkage. Various types of hyper shrinkage may be used for various co-data. Co-data may be continuous or categorical. The method accommodates inclusion of unpenalised covariates, posterior selection of covariates and multiple data types. The model fit is used to predict for new samples. The name 'ecpc' stands for Empirical Bayes, Co-data learnt, Prediction and Covariate selection. See Van Nee et al. (2020) <arxiv:2005.04010>.

Authors:Mirrelijn M. van Nee [aut, cre], Lodewyk F.A. Wessels [aut], Mark A. van de Wiel [aut]

ecpc_3.1.1.tar.gz
ecpc_3.1.1.zip(r-4.5)ecpc_3.1.1.zip(r-4.4)ecpc_3.1.1.zip(r-4.3)
ecpc_3.1.1.tgz(r-4.5-any)ecpc_3.1.1.tgz(r-4.4-any)ecpc_3.1.1.tgz(r-4.3-any)
ecpc_3.1.1.tar.gz(r-4.5-noble)ecpc_3.1.1.tar.gz(r-4.4-noble)
ecpc_3.1.1.tgz(r-4.4-emscripten)ecpc_3.1.1.tgz(r-4.3-emscripten)
ecpc.pdf |ecpc.html
ecpc/json (API)

# Install 'ecpc' in R:
install.packages('ecpc', repos = c('https://mirrelijn.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 9 scripts 866 downloads 22 exports 80 dependencies

Last updated 2 years agofrom:c67408db7e. Checks:6 OK, 3 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 10 2025
R-4.5-winNOTEMar 10 2025
R-4.5-macNOTEMar 10 2025
R-4.5-linuxNOTEMar 10 2025
R-4.4-winOKMar 10 2025
R-4.4-macOKMar 10 2025
R-4.4-linuxOKMar 10 2025
R-4.3-winOKMar 10 2025
R-4.3-macOKMar 10 2025

Exports:coef.ecpccreateConcreateGroupsetcreateScreateZforGroupsetcreateZforSplinescv.ecpcecpchierarchicalLassoobtainHierarchypenaltiesplot.ecpcpostSelectpredict.ecpcprint.ecpcproduceFoldssimDatsplitMediansummary.ecpcvisualiseGroupsetvisualiseGroupsetweightsvisualiseGroupweights

Dependencies:ashbackportsbitbit64bitopsbootcheckmatecliclustercodetoolscolorspaceCVXRdata.tabledotCall64ECOSolveRfansifarverfdsfieldsFNNforeachgglassoggplot2glmnetgluegmpgtablehdrcdeisobanditeratorsJOPSkernlabKernSmoothkslabelinglatticelifecyclelocfitmagrittrmapsMASSMatrixmclustmgcvmulticoolmultiridgemunsellmvtnormnlmeosqppcaPPpillarpkgconfigplyrpracmapROCquadprogR6rainbowRColorBrewerRcppRcppEigenRCurlrlangRmpfrrpartscalesscsSemiParshapesnowsnowfallspamSpATSsurvivaltibbleutf8vctrsviridisLitewithr